Leveraging Semantic Parsing for Relation Linking over Knowledge BasesOpen Website

2020 (modified: 12 May 2023)ISWC (1) 2020Readers: Everyone
Abstract: Knowledge base question answering systems are heavily dependent on relation extraction and linking modules. However, the task of extracting and linking relations from text to knowledge bases faces two primary challenges; the ambiguity of natural language and lack of training data. To overcome these challenges, we present SLING, a relation linking framework which leverages semantic parsing using Abstract Meaning Representation (AMR) and distant supervision. SLING integrates multiple approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledge base. The experiments on relation linking using three KBQA datasets, QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
0 Replies

Loading