TARGET: Traffic Rule-Based Test Generation for Autonomous Driving via Validated LLM-Guided Knowledge Extraction
Abstract: Recent incidents with autonomous vehicles highlight the need for rigorous testing to ensure safety and robustness. Constructing test scenarios for autonomous driving systems (ADSs), however, is labor-intensive. We propose TARGET, an end-to-end framework that automatically generates test scenarios from traffic rules. To address complexity, we leverage a Large Language Model (LLM) to extract knowledge from traffic rules. To mitigate hallucinations caused by large context during input processing, we introduce a domain-specific language (DSL) designed to be syntactically simple and compositional. This design allows the LLM to learn and generate test scenarios in a modular manner while enabling syntactic and semantic validation for each component. Based on these validated representations, TARGET synthesizes executable scripts to render scenarios in simulation. Evaluated seven ADSs with 284 scenarios derived from 54 traffic rules, TARGET uncovered 610 rule violations, collisions, and other issues. For each violation, TARGET generates scenario recordings and detailed logs, aiding root cause analysis. Two identified issues were confirmed by ADS developers: one linked to an existing bug report and the other to limited ADS functionality.
Loading