Tighter Performance Theory of FedExProx

ICLR 2025 Conference Submission10876 Authors

27 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: optimization, federated learning, proximal methods
Abstract: We revisit FedExProx -- a recently proposed distributed optimization method designed to enhance convergence properties of parallel proximal algorithms via extrapolation. In the process, we uncover a surprising flaw: its known theoretical guarantees on quadratic optimization tasks are no better than those offered by the vanilla Gradient Descent (GD) method. Motivated by this observation, we develop a novel analysis framework, establishing a tighter linear convergence rate for non-strongly convex quadratic problems. By incorporating both computation and communication costs, we demonstrate that FedExProx can indeed provably outperform GD, in stark contrast to the original analysis. Furthermore, we consider partial participation scenarios and analyze two adaptive extrapolation strategies-based on gradient diversity and Polyak stepsizes --- again significantly outperforming previous results. Moving beyond quadratics, we extend the applicability of our analysis to general functions satisfying the Polyak-Łojasiewicz condition, outperforming the previous strongly convex analysis while operating under weaker assumptions. Backed by empirical results, our findings point to a new and stronger potential of FedExProx, paving the way for further exploration of the benefits of extrapolation in federated learning.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10876
Loading