Gradients with Respect to Semantics Preserving Embeddings Tell the Uncertainty of Large Language Models

20 Sept 2025 (modified: 11 Feb 2026)Submitted to ICLR 2026EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Uncertainty Quantification; Large Language Models; Hallucination
Abstract: Uncertainty quantification (UQ) is an important technique for ensuring the trustworthiness of LLMs, given their tendency to hallucinate. Existing state-of-the-art UQ approaches for free-form generation rely heavily on sampling, which incurs high computational cost and variance. In this work, we propose the first gradient-based UQ method for free-form generation, SemGrad, which is sampling-free and computationally efficient. Unlike previous gradient-based methods developed for classification tasks, we propose to operate in semantic space rather than parameter space. Our method builds on the key intuition that a confident LLM should maintain stable output distributions under semantically equivalent input perturbations. We interpret the stability as the gradients in semantic space and introduce a Semantic Preservation Score (SPS) to identify embeddings that best capture semantics, with respect to which gradients are computed. We further propose HybridGrad, which combines the strengths of SemGrad and parameter gradients. Experiments demonstrate that both of our methods provide efficient and effective uncertainty estimates, achieving superior performance than state-of-the-art methods, particularly in settings with multiple valid responses.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 23648
Loading