Abstract: Image denoising is a fundamental task in computer vision. While prevailing deep learning-based supervised and self-supervised methods have excelled in eliminating in-distribution noise, their susceptibility to out-of-distribution (OOD) noise remains a significant challenge. The recent emergence of contrastive language-image pretraining (CLIP) model has showcased exceptional capabilities in open-world image recognition and segmentation. Yet, the potential for leveraging CLIP to enhance the robustness of low-level tasks remains largely unexplored. This paper un-covers that certain dense features extracted from the frozen ResNet image encoder of CLIP exhibit distortion-invariant and content-related properties, which are highly desirable for generalizable denoising. Leveraging these properties, we devise an asymmetrical encoder-decoder denoising network, which incorporates dense features including the noisy image and its multi-scale features from the frozen ResNet encoder of CLIP into a learnable image decoder to achieve generalizable denoising. The progressive feature augmentation strategy is further proposed to mitigate feature over-fitting and improve the robustness of the learnable decoder. Extensive experiments and comparisons conducted across diverse OOD noises, including synthetic noise, real-world sRGB noise, and low-dose CT image noise, demonstrate the superior generalization ability of our method.
Loading