PoseINN: Realtime Visual-based Pose Regression and Localization with Invertible Neural Networks

Published: 19 Apr 2024, Last Modified: 13 May 2024RoboNerF WS 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: pose regression, localization, normalizing flows, invertible neural network
TL;DR: Proposing visual pose regression and localization with normalizing flows using NeRF as image simulators.
Abstract: Estimating ego-pose from cameras is an important problem in robotics with applications ranging from mobile robotics to augmented reality. While SOTA models are becoming increasingly accurate, they can still be unwieldy due to high computational costs. In this paper, we propose to solve the problem by using invertible neural networks (INN) to find the mapping between the latent space of images and poses for a given scene. Our model achieves similar performance to the SOTA while being faster to train and only requiring offline rendering of low-resolution synthetic data. By using normalizing flows, the proposed method also provides uncertainty estimation for the output. We also demonstrated the efficiency of this method by deploying the model on a mobile robot.
Submission Number: 17
Loading