Do Neural Scaling Laws Exist on Graph Self-Supervised Learning?

Published: 16 Nov 2024, Last Modified: 26 Nov 2024LoG 2024 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph self-supervised learning, Graph Foundation Model, Graph Neural Network
TL;DR: This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype.
Abstract: Self-supervised learning(SSL) is essential to obtain foundation models in NLP and CV domains via effectively leveraging knowledge in large-scale unlabeled data. The reason for its success is that a suitable SSL design can help the model to follow the neural scaling law, i.e., the performance consistently improves with increasing model and dataset sizes. However, it remains a mystery whether existing SSL in the graph domain can follow the scaling behavior toward building Graph Foundation Models~(GFMs) with large-scale pre-training. In this study, we examine whether existing graph SSL techniques can follow the neural scaling behavior with the potential to serve as the essential component for GFMs. Our benchmark includes comprehensive SSL technique implementations with analysis conducted on both the conventional SSL setting and many new settings adopted in other domains. Surprisingly, despite the SSL loss continuously decreasing, no existing graph SSL techniques follow the neural scaling behavior on the downstream performance. The model performance only merely fluctuates on different data scales and model scales. Instead of the scales, the key factors influencing the performance are the choices of model architecture and pretext task design. This paper examines existing SSL techniques for the feasibility of Graph SSL techniques in developing GFMs and opens a new direction for graph SSL design with the new evaluation prototype. Our code implementation is available online to ease reproducibility https://github.com/HaitaoMao/GraphSSLScaling.
Submission Type: Full paper proceedings track submission (max 9 main pages).
Software: https://github.com/HaitaoMao/GraphSSLScaling
Poster: jpg
Poster Preview: jpg
Submission Number: 39
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview