Dilated Heterogeneous Convolution for Cell Detection and Segmentation Based on Mask R-CNN

Published: 01 Jan 2024, Last Modified: 13 Nov 2024Sensors 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Owing to the variable shapes, large size difference, uneven grayscale, and dense distribution among biological cells in an image, it is very difficult to accurately detect and segment cells. Especially, it is a serious challenge for some microscope imaging devices with limited resources owing to a large number of learning parameters and computational burden when using the standard Mask R-CNN. In this work, we propose a mask R-DHCNN for cell detection and segmentation. More specifically, Dilation Heterogeneous Convolution (DHConv) is proposed by designing a novel convolutional kernel structure (i.e., DHConv), which integrates the strengths of the heterogeneous kernel structure and dilated convolution. Then, the traditional homogeneous convolution structure of the standard Mask R-CNN is replaced with the proposed DHConv module to it adapt to shape and size differences encountered in cell detection and segmentation tasks. Finally, a series of comparison and ablation experiments are conducted on various biological cell datasets (such as U373, GoTW1, SIM+, and T24) to verify the effectiveness of the proposed method. The results show that the proposed method can obtain better performance than some state-of-the-art methods in multiple metrics (including AP, Precision, Recall, Dice, and PQ) while maintaining competitive FLOPs and FPS.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview