A new framework for evaluating model out-of-distribution generalisation for the biochemical domain

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Machine learning evaluation, AI4Science, Biochemistry, Proteins, Small molecules, Protein Language Models
TL;DR: We present a new metric for estimating the the expected performance of a model against any specific target deployment distribution(s)
Abstract: Quantifying model generalization to out-of-distribution data has been a longstanding challenge in machine learning. Addressing this issue is crucial for leveraging machine learning in scientific discovery, where models must generalize to new molecules or materials. Current methods typically split data into train and test sets using various criteria — temporal, sequence identity, scaffold, or random cross-validation — before evaluating model performance. However, with so many splitting criteria available, existing approaches offer limited guidance on selecting the most appropriate one, and they do not provide mechanisms for incorporating prior knowledge about the target deployment distribution(s). To tackle this problem, we have developed a novel metric, AU-GOOD, which quantifies expected model performance under conditions of increasing dissimilarity between train and test sets, while also accounting for prior knowledge about the target deployment distribution(s), when available. This metric is broadly applicable to biochemical entities, including proteins, small molecules, nucleic acids, or cells; as long as a relevant similarity function is defined for them. Recognizing the wide range of similarity functions used in biochemistry, we propose criteria to guide the selection of the most appropriate metric for partitioning. We also introduce a new partitioning algorithm that generates more challenging test sets, and we propose statistical methods for comparing models based on AU-GOOD. Finally, we demonstrate the insights that can be gained from this framework by applying it to two different use cases: developing predictors for pharmaceutical properties of small molecules, and using protein language models as embeddings to build biophysical property predictors.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10363
Loading