Multi-Perspective Data Augmentation for Few-shot Object Detection

Published: 22 Jan 2025, Last Modified: 10 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: few-shot object detection, controllable diffusion, data augmentation
Abstract: Recent few-shot object detection (FSOD) methods have focused on augmenting synthetic samples for novel classes, show promising results to the rise of diffusion models. However, the diversity of such datasets is often limited in representativeness because they lack awareness of typical and hard samples, especially in the context of foreground and background relationships. To tackle this issue, we propose a Multi-Perspective Data Augmentation (MPAD) framework. In terms of foreground-foreground relationships, we propose in-context learning for object synthesis (ICOS) with bounding box adjustments to enhance the detail and spatial information of synthetic samples. Inspired by the large margin principle, support samples play a vital role in defining class boundaries. Therefore, we design a Harmonic Prompt Aggregation Scheduler (HPAS) to mix prompt embeddings at each time step of the generation process in diffusion models, producing hard novel samples. For foreground-background relationships, we introduce a Background Proposal method (BAP) to sample typical and hard backgrounds. Extensive experiments on multiple FSOD benchmarks demonstrate the effectiveness of our approach. Our framework significantly outperforms traditional methods, achieving an average increase of $17.5\%$ in nAP50 over the baseline on PASCAL VOC.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6574
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview