Abstract: This paper generates a collision-free trajectory for wheeled mobile robots in presence of dynamic obstacles. The existing literature solves the collision avoidance problem by changing the velocity vector instantaneously, which is not feasible due to the non-holonomic constraints of robots. So in this work, a smooth change in the velocity vector along with constraints in turn radius has been considered for any required maneuvers. This work also re-plans the path evading re-collision to reach the goal ensuring minimum deviation from the initial path, which was also not addressed in the literature. The low computational requirement of the proposed algorithm allows for online applications on wheeled mobile robots with limited computational resources. The approach is validated through simulations on multiple randomized configurations.
Loading