Fast Matrix Multiplication: Limitations of the Coppersmith-Winograd Method

Published: 01 Jan 2015, Last Modified: 30 Sept 2024STOC 2015EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and Winograd (1990), ran in time O(n2.3755). Recently, a surge of activity by Stothers, Vassilevska-Williams, and Le~Gall has led to an improved algorithm running in time O(n2.3729). These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity of Coppersmith and Winograd. We show that this exact approach cannot result in an algorithm with running time O(n2.3725), and identify a wide class of variants of this approach which cannot result in an algorithm with running time $O(n^{2.3078}); in particular, this approach cannot prove the conjecture that for every ε > 0, two n x n matrices can be multiplied in time O(n2+ε).We describe a new framework extending the original laser method, which is the method underlying the previously mentioned algorithms. Our framework accommodates the algorithms by Coppersmith and Winograd, Stothers, Vassilevska-Williams and Le~Gall. We obtain our main result by analyzing this framework. The framework also explains why taking tensor powers of the Coppersmith--Winograd identity results in faster algorithms.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview