Abstract: Previous research has shown that humans are more receptive towards language models that that exhibit empathetic behavior. While empathy is essential for developing helpful dialogue agents, very few large corpora containing empathetic dialogues are available for fine-tune LLMs. The few existing corpora have largely relied on crowdsourcing to simulate empathetic conversations, a process that is expensive, time-consuming, and not scalable to larger datasets. We propose a data generation framework for developing SYNTHEMPATHY, a large corpus containing 105k empathetic responses to real-life situations compiled through LLM generation. A base Mistral 7B model fine-tuned on our SYNTHEMPATHY corpus exhibits an increase in the average empathy score.
Paper Type: Short
Research Area: Generation
Research Area Keywords: few-shot generation, low resource dialogue
Contribution Types: Model analysis & interpretability, Approaches to low-resource settings, Data resources
Languages Studied: English
Submission Number: 1057
Loading