Keywords: Continual Learning, Class-Incremental Learning, Contrastive Learning, Extreme Learning Machines
Abstract: This paper studies the problem of class-incremental learning (CIL), a core setting within continual learning where a model learns a sequence of tasks, each containing a distinct set of classes. Traditional CIL methods, which do not leverage pre-trained models (PTMs), suffer from catastrophic forgetting (CF) due to the need to incrementally learn both feature representations and the classifier. The integration of PTMs into CIL has recently led to efficient approaches that treat the PTM as a fixed feature extractor combined with analytic classifiers, achieving state-of-the-art performance. However, they still face a major limitation: the inability to continually adapt feature representations to best suit the CIL tasks, leading to suboptimal performance. To address this, we propose AnaCP (Analytic Contrastive Projection), a novel method that preserves the efficiency of analytic classifiers while enabling incremental feature adaptation without gradient-based training, thereby eliminating the CF caused by gradient updates. Our experiments show that AnaCP not only outperforms existing baselines but also achieves the accuracy level of joint training, which is regarded as the upper bound of CIL.
Supplementary Material: zip
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 23871
Loading