Weak-shot Semantic Segmentation via Dual Similarity TransferDownload PDF

Published: 31 Oct 2022, Last Modified: 22 Oct 2023NeurIPS 2022 AcceptReaders: Everyone
Abstract: Semantic segmentation is a practical and active task, but severely suffers from the expensive cost of pixel-level labels when extending to more classes in wider applications. To this end, we focus on the problem named weak-shot semantic segmentation, where the novel classes are learnt from cheaper image-level labels with the support of base classes having off-the-shelf pixel-level labels. To tackle this problem, we propose a dual similarity transfer framework, which is built upon MaskFormer to disentangle the semantic segmentation task into single-label classification and binary segmentation for each proposal. Specifically, the binary segmentation sub-task allows proposal-pixel similarity transfer from base classes to novel classes, which enables the mask learning of novel classes. We also learn pixel-pixel similarity from base classes and distill such class-agnostic semantic similarity to the semantic masks of novel classes, which regularizes the segmentation model with pixel-level semantic relationship across images. In addition, we propose a complementary loss to facilitate the learning of novel classes. Comprehensive experiments on the challenging COCO-Stuff-10K and ADE20K datasets demonstrate the effectiveness of our method.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2210.02270/code)
12 Replies