Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: large language model, metacognition, safety, neurofeedback, in-context learning
TL;DR: This paper demonstrates that language models possess metacognitive-like abilities to monitor and control their internal neural activations.
Abstract: Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, yet at other times seem unable to recognize those strategies that govern their behavior. This suggests a limited degree of metacognition --- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control. Metacognition enhances LLMs' capabilities in solving complex tasks but also raises safety concerns, as models may obfuscate their internal processes to evade neural-activation-based oversight (e.g., safety detector). Given society's increased reliance on these models, it is critical that we understand their metacognitive abilities. To address this, we introduce a neuroscience-inspired \emph{neurofeedback} paradigm that uses in-context learning to quantify metacognitive abilities of LLMs to \textit{report} and \textit{control} their activation patterns. We demonstrate that their abilities depend on several factors: the number of in-context examples provided, the semantic interpretability of the neural activation direction (to be reported/controlled), and the variance explained by that direction. These directions span a ``metacognitive space'' with dimensionality much lower than the model's neural space, suggesting LLMs can monitor only a small subset of their neural activations. Our paradigm provides empirical evidence to quantify metacognition in LLMs, with significant implications for AI safety (e.g., adversarial attack and defense).
Primary Area: Social and economic aspects of machine learning (e.g., fairness, interpretability, human-AI interaction, privacy, safety, strategic behavior)
Submission Number: 11509
Loading