GNN-based Probabilistic Supply and Inventory Predictions in Supply Chain Networks

24 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Graph Neural Network, Supply Chain Network, Shipment Prediction, Inventory Prediction, Event Prediction
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Successful supply chain optimization must mitigate imbalances between supply and demand over time. While accurate demand prediction is essential for supply planning, it alone does not suffice. The key to successful supply planning for optimal and viable execution lies in maximizing predictability for both demand and supply throughout an execution horizon. Therefore, enhancing the accuracy of supply predictions is imperative to create an attainable supply plan that matches demand without overstocking or understocking. However, in complex supply chain networks with numerous nodes and lanes, accurate supply predictions are challenging due to dynamic node interactions, cascading supply delays, resource availability, production and logistic capabilities. Consequently, supply executions often deviate from their initial plans. To address this, we present the Graph-based Supply Prediction (GSP) probabilistic model. Our attention-based graph neural network (GNN) model predicts supplies, inventory, and imbalances using graph-structured historical data, demand forecasting, and original supply plan inputs. The experiments, conducted using historical data from a global consumer goods company’s large-scale supply chain, demonstrate that GSP significantly improves supply and inventory prediction accuracy, potentially offering supply plan corrections to optimize executions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8927
Loading