Noise-robust Named Entity Understanding for Virtual AssistantsDownload PDFOpen Website

2020 (modified: 20 May 2025)CoRR 2020Readers: Everyone
Abstract: Named Entity Recognition (NER) and Entity Linking (EL) play an essential role in voice assistant interaction, but are challenging due to the special difficulties associated with spoken user queries. In this paper, we propose a novel architecture that jointly solves the NER and EL tasks by combining them in a joint reranking module. We show that our proposed framework improves NER accuracy by up to 3.13% and EL accuracy by up to 3.6% in F1 score. The features used also lead to better accuracies in other natural language understanding tasks, such as domain classification and semantic parsing.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview