Abstract: Federated Learning [1] enables distributed devices to learn a shared machine learning model together, without uploading their private training data. It has received significant attention recently and has been used in mobile applications such as search suggestion [2] and object detection [3]. Federated Learning is different from distributed machine learning due to the following reasons: 1) System heterogeneity: federated learning is usually performed on devices having highly dynamic and heterogeneous network, compute, and power availability. 2) Data heterogeneity (or statistical heterogeneity): data is produced by different users on different devices, and therefore may have different statistical distribution (non-IID).
Loading