Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data

ICLR 2025 Conference Submission5356 Authors

26 Sept 2024 (modified: 20 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: inverse problems, diffusion, ambient diffusion, mri
TL;DR: We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data.
Abstract: We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier subsampled multi-coil measurements at acceleration factors R$=2, 4, 6, 8$. Secondly, we propose $\textit{Ambient Diffusion Posterior Sampling}$ (A-DPS), a reconstruction algorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5356
Loading