ACER: Automatic Language Model Context Extension via Retrieval

ICLR 2025 Conference Submission12897 Authors

28 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: language, retrieval, long context understanding, text generation
Abstract: Long-context modeling is one of the critical capabilities of language AI for digesting and reasoning over complex information pieces. In practice, long-context capabilities are typically built into a pre-trained language model (LM) through a carefully designed context extension stage, with the goal of producing generalist long-context capabilities. In our preliminary experiments, however, we discovered that the current open-weight generalist long-context models are still lacking in practical long-context processing tasks. While this means perfectly effective long-context modeling demands task-specific data, the cost can be prohibitive. In this paper, we draw inspiration from how humans process a large body of information: a lossy retrieval stage ranks a large set of documents while the reader ends up reading deeply only the top candidates. We build an automatic data synthesis pipeline that mimics this process using short-context LMs. The short-context LMs are further tuned using these self-generated data to obtain task-specific long-context capabilities. Similar to how pre-training learns from imperfect data, we hypothesize and further demonstrate that the short-context model can bootstrap over the synthetic data, outperforming not only long-context generalist models but also the retrieval and read pipeline used to synthesize the training data.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12897
Loading