Abstract: Many networks in the real world are dynamic in nature: nodes enter, exit, and make and break connections with one another as time passes. Several random graph models of these networks are such that nodes have well-defined arrival times. It is natural to ask if, for a given random graph model, we can recover the arrival order of nodes, given information about the structure of the graph. In this work, we give a rigorous formulation of the problem in a statistical learning framework and tie its feasibility, for a broad class of models, to several sets of permutations associated with the symmetries of the random graph model and graphs generated by it. Moreover, we show how the same quantities are fundamental to the study of the information content of graph structures. We then apply our general results to the special cases of the Erdoos-Renyi and preferential attachment models to derive strong inapproximability results.
Loading