Abstract: The rapid development of indoor location-based services (LBS) has raised concerns about location privacy protection in the 3-dimensional (3D) space. The existing 2-dimensional (2D) location privacy protection mechanisms (LPPMs) cannot effectively resist attacks in 3D environments. Furthermore, users may have various sensitive attributes at different locations and times. In this article, we first formally study the relationship between two complementary notions of geo-indistinguishability and distortion privacy (i.e., expected inference error) in the 3D space and develop a two-phase personalized 3D LPPM (P3DLPPM). In Phase I, we search for neighboring locations to formulate a protection location set (PLS) for hiding the actual location based on the above-mentioned relationship. To realize this, we develop a 3D Hilbert curve-based minimum distance searching algorithm to find the PLS with minimum diameter for each location while guaranteeing differential privacy. In Phase II, we put forth a novel Permute-and-Flip mechanism for location perturbation, which maps its initial application in data publishing privacy protection to a location perturbation mechanism. It generates fake locations with smaller perturbation distances while improving the balance between privacy and quality of service (QoS). Simulation results show that the proposed P3DLPPM can significantly improve personalized privacy protection while meeting the user's QoS needs.
Loading