Effective Fault Scenario Identification for Communication Networks via Knowledge-Enhanced Graph Neural NetworksDownload PDFOpen Website

Published: 01 Jan 2024, Last Modified: 01 Apr 2024IEEE Trans. Mob. Comput. 2024Readers: Everyone
Abstract: Fault Scenario Identification (FSI) is a challenging task that aims to automatically identify the fault types in communication networks from massive alarms to guarantee effective fault recoveries. Existing methods are developed based on rules, which are not accurate enough due to the mismatching issue. In this paper, we propose an effective method named Knowledge-Enhanced Graph Neural Network (KE-GNN), the main idea of which is to integrate the advantages of both the rules and GNN. This work is the first work that employs GNN and rules to tackle the FSI task. Specifically, we encode knowledge using propositional logic and map them into a knowledge space. Then, we elaborately design a teacher-student scheme to minimize the distance between the knowledge embedding and the prediction of GNN, integrating knowledge and enhancing the GNN. To validate the performance of the proposed method, we collected and labeled three real-world 5G fault scenario datasets. Extensive evaluation conducted on these datasets indicates that our method achieves the best performance compared with other representative methods, improving the accuracy by up to 8.10%. Furthermore, the proposed method achieves the best performance against a small dataset setting and can be effectively applied to a new carrier site with a different topology structure.
0 Replies

Loading