A Probabilistic Approach to Latent Cluster AnalysisOpen Website

2013 (modified: 16 Jul 2019)IJCAI 2013Readers: Everyone
Abstract: Facing a large number of clustering solutions, cluster ensemble method provides an effective approach to aggregating them into a better one. In this paper, we propose a novel cluster ensemble method from probabilistic perspective. It assumes that each clustering solution is generated from a latent cluster model, under the control of two probabilistic parameters. Thus, the cluster ensemble problem is reformulated into an optimization problem of maximum likelihood. An EM-style algorithm is designed to solve this problem. It can determine the number of clusters automatically. Experimenal results have shown that the proposed algorithm outperforms the state-of-the-art methods including EAC-AL, CSPA, HGPA, and MCLA. Furthermore, it has been shown that our algorithm is stable in the predicted numbers of clusters.
0 Replies

Loading