Deep Domain Generalization via Conditional Invariant Adversarial NetworksOpen Website

2018 (modified: 11 Nov 2022)ECCV (15) 2018Readers: Everyone
Abstract: Domain generalization aims to learn a classification model from multiple source domains and generalize it to unseen target domains. A critical problem in domain generalization involves learning domain-invariant representations. Let X and Y denote the features and the labels, respectively. Under the assumption that the conditional distribution P(Y|X) remains unchanged across domains, earlier approaches to domain generalization learned the invariant representation T(X) by minimizing the discrepancy of the marginal distribution P(T(X)). However, such an assumption of stable P(Y|X) does not necessarily hold in practice. In addition, the representation learning function T(X) is usually constrained to a simple linear transformation or shallow networks. To address the above two drawbacks, we propose an end-to-end conditional invariant deep domain generalization approach by leveraging deep neural networks for domain-invariant representation learning. The domain-invariance property is guaranteed through a conditional invariant adversarial network that can learn domain-invariant representations w.r.t. the joint distribution P(T(X), Y) if the target domain data are not severely class unbalanced. We perform various experiments to demonstrate the effectiveness of the proposed method.
0 Replies

Loading