Abstract: Mining relationships in time series data is of immense interest to several disciplines such as neuroscience, climate science, and transportation. Traditional approaches for mining relationships focus on discovering pair-wise relationships in the data. In this work, we define a novel relationship pattern involving three interacting time series, which we refer to as a tripole. We show that tripoles capture interesting relationship patterns in the data that are not possible to be captured using traditionally studied pair-wise relationships. We demonstrate the utility of tripoles in multiple real-world datasets from various domains including climate science and neuroscience. In particular, our approach is able to discover tripoles that are statistically significant, reproducible across multiple independent data sets, and lead to novel domain insights.
0 Replies
Loading