Joint Learning of Character and Word EmbeddingsOpen Website

2015 (modified: 16 Jul 2019)IJCAI 2015Readers: Everyone
Abstract: Most word embedding methods take a word as a basic unit and learn embeddings according to words' external contexts, ignoring the internal structures of words. However, in some languages such as Chinese, a word is usually composed of several characters and contains rich internal information. The semantic meaning of a word is also related to the meanings of its composing characters. Hence, we take Chinese for example, and present a character-enhanced word embedding model (CWE). In order to address the issues of character ambiguity and non-compositional words, we propose multiple prototype character embeddings and an effective word selection method. We evaluate the effectiveness of CWE on word relatedness computation and analogical reasoning. The results show that CWE outperforms other baseline methods which ignore internal character information. The codes and data can be accessed from https://github.com/Leonard-Xu/CWE.
0 Replies

Loading