Anonymizing user profiles for personalized web searchOpen Website

2010 (modified: 12 Nov 2022)WWW 2010Readers: Everyone
Abstract: We study the problem of anonymizing user profiles so that user privacy is sufficiently protected while the anonymized profiles are still effective in enabling personalized web search. We propose a Bayes-optimal privacy notion to bound the prior and posterior probability of associating a user with an individual term in the anonymized user profile set. We also propose a novel bundling technique that clusters user profiles into groups by taking into account the semantic relationships between the terms while satisfying the privacy constraint. We evaluate our approach through a set of preliminary experiments using real data demonstrating its feasibility and effectiveness.
0 Replies

Loading