Beyond Classical Diffusion: Ballistic Graph Neural Network

Anonymous

Sep 25, 2019 Blind Submission readers: everyone Show Bibtex
  • Keywords: Graph Convolutional Network, Diffusion, Transportation, Machine Learning
  • TL;DR: A new perspective on how to collect the correlation between nodes based on diffusion properties.
  • Abstract: This paper presents the ballistic graph neural network. Ballistic graph neural network tackles the weight distribution from a transportation perspective and has many different properties comparing to the traditional graph neural network pipeline. The ballistic graph neural network does not require to calculate any eigenvalue. The filters propagate exponentially faster($\sigma^2 \sim T^2$) comparing to traditional graph neural network($\sigma^2 \sim T$). We use a perturbed coin operator to perturb and optimize the diffusion rate. Our results show that by selecting the diffusion speed, the network can reach a similar accuracy with fewer parameters. We also show the perturbed filters act as better representations comparing to pure ballistic ones. We provide a new perspective of training graph neural network, by adjusting the diffusion rate, the neural network's performance can be improved.
0 Replies

Loading