Keywords: large language models; decision making; reasoning
TL;DR: We propose PlanU, a method that enhances LLM-based decision-making under uncertainty by modeling value distributions via quantile regression and guiding MCTS exploration using a novel Upper Confidence Bounds with Curiosity (UCC) score.
Abstract: Large Language Models (LLMs) are increasingly being explored across a range of reasoning tasks. However, LLMs sometimes struggle with reasoning tasks under uncertainty that are relatively easy for humans, such as planning actions in stochastic environments. The adoption of LLMs for reasoning is impeded by uncertainty challenges, such as LLM uncertainty and environmental uncertainty. LLM uncertainty arises from the stochastic sampling process inherent to LLMs. Most LLM-based Decision-Making (LDM) approaches address LLM uncertainty through multiple reasoning chains or search trees. However, these approaches overlook environmental uncertainty, which leads to poor performance in environments with stochastic state transitions.
Some recent LDM approaches deal with uncertainty by forecasting the probability of unknown variables. However, they are not designed for multi-step reasoning tasks that require interaction with the environment. To address uncertainty in LLM decision-making, we introduce PlanU, an LLM-based planning method that captures uncertainty within Monte Carlo Tree Search (MCTS). PlanU models the return of each node in the MCTS as a quantile distribution, which uses a set of quantiles to represent the return distribution. To balance exploration and exploitation during tree search, PlanU introduces an Upper Confidence Bounds with Curiosity (UCC) score which estimates the uncertainty of MCTS nodes. Through extensive experiments, we demonstrate the effectiveness of PlanU in LLM-based reasoning tasks under uncertainty.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 20239
Loading