Sentiment Analysis on Multi-View Social DataOpen Website

Published: 01 Jan 2016, Last Modified: 10 Nov 2023MMM (2) 2016Readers: Everyone
Abstract: There is an increasing interest in understanding users’ attitude or sentiment towards a specific topic (e.g., a brand) from the large repository of opinion-rich data on the Web. While great efforts have been devoted on the single media, either text or image, little attempts are paid for the joint analysis of multi-view data which is becoming a prevalent form in the social media. For example, paired with a short textual message on Twitter, an image is attached. To prompt the research on this interesting and important problem, we introduce a multi-view sentiment analysis dataset (MVSA) including a set of image-text pairs with manual annotations collected from Twitter. The dataset can be utilized as a valuable benchmark for both single-view and multi-view sentiment analysis. With this dataset, many state-of-the-art approaches are evaluated. More importantly, the effectiveness of the correlation between different views is also studied using the widely used fusion strategies and an advanced multi-view feature extraction method. Results of these comprehensive experiments indicate that the performance can be boosted by jointly considering the textual and visual views.
0 Replies

Loading