Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic Localization

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: diffusion models, score-based generative models, convergence bounds, stochastic localization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: We provide the first convergence bounds for diffusion models assuming only finite second moments of the data distribution and an L2-accurate score estimate, using tools from stochastic localization.
Abstract: Denoising diffusions are a powerful method to generate approximate samples from high-dimensional data distributions. Recent results provide polynomial bounds on their convergence rate, assuming $L^2$-accurate scores. Until now, the tightest bounds were either superlinear in the data dimension or required strong smoothness assumptions. We provide the first convergence bounds which are linear in the data dimension (up to logarithmic factors) assuming only finite second moments of the data distribution. We show that diffusion models require at most $\tilde O(\frac{d \log^2(1/\delta)}{\varepsilon^2})$ steps to approximate an arbitrary distribution on $\mathbb{R}^d$ corrupted with Gaussian noise of variance $\delta$ to within $\varepsilon^2$ in KL divergence. Our proof extends the Girsanov-based methods of previous works. We introduce a refined treatment of the error from discretizing the reverse SDE inspired by stochastic localization.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 1361