Approximate optimization of convex functions with outlier noiseDownload PDF

21 May 2021, 20:45 (modified: 26 Oct 2021, 04:17)NeurIPS 2021 PosterReaders: Everyone
Keywords: gradient descent, convex optimization, optimization with noise, convex interpolation
Abstract: We study the problem of minimizing a convex function given by a zeroth order oracle that is possibly corrupted by {\em outlier noise}. Specifically, we assume the function values at some points of the domain are corrupted arbitrarily by an adversary, with the only restriction being that the total volume of corrupted points is bounded. The goal then is to find a point close to the function's minimizer using access to the corrupted oracle. We first prove a lower bound result showing that, somewhat surprisingly, one cannot hope to approximate the minimizer {\em nearly as well} as one might expect, even if one is allowed {\em an unbounded number} of queries to the oracle. Complementing this negative result, we then develop an efficient algorithm that outputs a point close to the minimizer of the convex function, where the specific distance matches {\em exactly}, up to constant factors, the distance bound shown in our lower bound result.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
7 Replies