Differential Dataset Cartography: Explainable Artificial Intelligence in Comparative Personalized Sentiment AnalysisOpen Website

Published: 01 Jan 2023, Last Modified: 19 Jan 2024ICCS (1) 2023Readers: Everyone
Abstract: Data Maps is an interesting method of graphical representation of datasets, which allows observing the model’s behaviour for individual instances in the learning process (training dynamics). The method groups elements of a dataset into easy-to-learn, ambiguous, and hard-to-learn. In this article, we present an extension of this method, Differential Data Maps, which allows you to visually compare different models trained on the same dataset or analyse the effect of selected features on model behaviour. We show an example application of this visualization method to explain the differences between the three personalized deep neural model architectures from the literature and the HumAnn model we developed. The advantage of the proposed HumAnn is that there is no need for further learning for a new user in the system, in contrast to known personalized methods relying on user embedding. All models were tested on the sentiment analysis task. Three datasets that differ in the type of human context were used: user-annotator, user-author, and user-author-annotator. Our results show that with the new explainable AI method, it is possible to pose new hypotheses explaining differences in the quality of model performance, both at the level of features in the datasets and differences in model architectures.
0 Replies

Loading