A Fast Unified Model for Parsing and Sentence UnderstandingDownload PDF

2016 (modified: 16 Jul 2019)ACL (1) 2016Readers: Everyone
Abstract: Tree-structured neural networks exploit valuable syntactic parse information as they interpret the meanings of sentences. However, they suer from two key technical problems that make them slow and unwieldyforlarge-scaleNLPtasks: theyusually operate on parsed sentences and they do not directly support batched computation. We address these issues by introducingtheStack-augmentedParser-Interpreter NeuralNetwork(SPINN),whichcombines parsing and interpretation within a single tree-sequence hybrid model by integrating tree-structured sentence interpretation into the linear sequential structure of a shiftreduceparser. Ourmodelsupportsbatched computation for a speedup of up to 25◊ over other tree-structured models, and its integrated parser can operate on unparsed data with little loss in accuracy. We evaluate it on the Stanford NLI entailment task and show that it significantly outperforms other sentence-encoding models.
0 Replies

Loading