SEMDICE: Off-policy State Entropy Maximization via Stationary Distribution Correction Estimation

ICLR 2025 Conference Submission13026 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: state entropy maximization, unsupervised reinforcement learning
TL;DR: This paper introduces state-entropy maximization method for RL pre-training based on stationary distribution optimization.
Abstract: In the unsupervised pre-training for reinforcement learning, the agent aims to learn a prior policy for downstream tasks without relying on task-specific reward functions. We focus on state entropy maximization (SEM), where the goal is to learn a policy that maximizes the entropy of the state's stationary distribution. In this paper, we introduce SEMDICE, a principled off-policy algorithm that computes an SEM policy from an arbitrary off-policy dataset, which optimizes the policy directly within the space of stationary distributions. SEMDICE computes a single, stationary Markov state-entropy-maximizing policy from an arbitrary off-policy dataset. Experimental results demonstrate that SEMDICE outperforms baseline algorithms in maximizing state entropy while achieving the best adaptation efficiency for downstream tasks among SEM-based unsupervised RL pre-training methods.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13026
Loading