Maintaining cooperation in complex social dilemmas using deep reinforcement learning

Anonymous

Nov 03, 2017 (modified: Nov 03, 2017) ICLR 2018 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: Social dilemmas are situations where individuals face a temptation to increase their payoffs at a cost to total welfare. Building artificially intelligent agents that achieve good outcomes in these situations is important because many real world interactions include a tension between selfish interests and the welfare of others. We show how to modify modern reinforcement learning methods to construct agents that act in ways that are simple to understand, nice (begin by cooperating), provokable (try to avoid being exploited), and forgiving (try to return to mutual cooperation). We show both theoretically and experimentally that such agents can maintain cooperation in Markov social dilemmas. Our construction does not require training methods beyond a modification of self-play, thus if an environment is such that good strategies can be constructed in the zero-sum case (eg. Atari) then we can construct agents that solve social dilemmas in this environment.
  • TL;DR: How can we build artificial agents that solve social dilemmas (situations where individuals face a temptation to increase their payoffs at a cost to total welfare)?
  • Keywords: reinforcement learning, cooperation, social dilemmas, game theory

Loading