Finding a Jack-of-All-Trades: An Examination of Semi-supervised Learning in Reading ComprehensionDownload PDF

29 Nov 2024 (modified: 21 Jul 2022)Submitted to ICLR 2017Readers: Everyone
Abstract: Deep learning has proven useful on many NLP tasks including reading comprehension. However it requires a lot of training data which are not available in some domains of application. Hence we examine the possibility of using data-rich domains to pre-train models and then apply them in domains where training data are harder to get. Specifically, we train a neural-network-based model on two context-question-answer datasets, the BookTest and CNN/Daily Mail, and we monitor transfer to subsets of bAbI, a set of artificial tasks designed to test specific reasoning abilities, and of SQuAD, a question-answering dataset which is much closer to real-world applications. Our experiments show very limited transfer if the model isn’t shown any training examples from the target domain however the results are promising if the model is shown at least a few target-domain examples. Furthermore we show that the effect of pre-training is not limited to word embeddings.
TL;DR: We examine effect of transfer learning in AS Reader model from two source domains (CNN/DM and BookTest) to two target domains (bAbI and SQuAD).
Conflicts: ibm.com
Keywords: Natural language processing, Semi-Supervised Learning, Deep learning, Transfer Learning
21 Replies

Loading