Abstract: State-of-the-art computer-assisted translation engines are based on a statistical prediction engine, which interactively provides completions to what a human translator types. The integration of human speech into a computer-assisted system is also a challenging area and is the aim of this paper. So far, only a few methods for integrating statistical machine translation (MT) models with automatic speech recognition (ASR) models have been studied. They were mainly based on N-best rescoring approach. N-best rescoring is not an appropriate search method for building a real-time prediction engine. In this paper, we study the incorporation of MT models and ASR models using finite-state automata. We also propose some transducers based on MT models for rescoring the ASR word graphs.
0 Replies
Loading