A Boolean Task Algebra for Reinforcement LearningDownload PDF

25 Sept 2019 (modified: 22 Oct 2023)ICLR 2020 Conference Blind SubmissionReaders: Everyone
TL;DR: We formalise the composition of tasks as a Boolean algebra and provide a method for producing the optimal value functions of the composed tasks with no further learning.
Abstract: We propose a framework for defining a Boolean algebra over the space of tasks. This allows us to formulate new tasks in terms of the negation, disjunction and conjunction of a set of base tasks. We then show that by learning goal-oriented value functions and restricting the transition dynamics of the tasks, an agent can solve these new tasks with no further learning. We prove that by composing these value functions in specific ways, we immediately recover the optimal policies for all tasks expressible under the Boolean algebra. We verify our approach in two domains, including a high-dimensional video game environment requiring function approximation, where an agent first learns a set of base skills, and then composes them to solve a super-exponential number of new tasks.
Keywords: Reinforcement Learning, Transfer, Composition, Lifelong, Multi-task, Deep Reinforcement learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2001.01394/code)
Original Pdf: pdf
14 Replies

Loading