SNOW: Subscribing to Knowledge via Channel Pooling for Transfer & Lifelong Learning

Anonymous

Sep 25, 2019 ICLR 2020 Conference Blind Submission readers: everyone Show Bibtex
  • TL;DR: We propose SNOW, an efficient way of transfer and lifelong learning by subscribing knowledge of a source model for new tasks through a novel channel pooling block.
  • Abstract: SNOW is a novel learning method to improve training/serving throughput as well as accuracy for transfer and lifelong learning based on knowledge subscription. SNOW selects the useful top-K intermediate feature maps for a target task from a pre-trained and frozen source model through a novel channel pooling scheme, and utilizes them in the task-specific delta model. The source model is responsible for generating a large number of generic feature maps, and the delta model fuses the subscribed feature maps (through channel pooling) with its own local ones to deliver high accuracy for the target task. Since a source model participates both training and serving of all target tasks in an inference only mode, one source model can serve multiple delta models, enabling significant computation sharing. The sizes of such delta models are fractional of the source model, thus SNOW also provides model-size efficiency. Our experimental results show that SNOW offers a superior balance between accuracy and training/inference speed for various image classification tasks to the existing transfer and lifelong learning practices.
  • Keywords: channel pooling, efficient training and inferencing, lifelong learning, transfer learning, multi task
0 Replies

Loading