Keywords: Diffusion, Genome, DNA, 1000 Genome, ALS
TL;DR: We presents a diffusion model to generate synthetic human genotypes closely mimicking real ones, that protect privacy while enhancing genetic research.
Abstract: In this paper, we introduce the first diffusion model designed to generate complete synthetic human genotypes, which, by standard protocols, one can straightforwardly expand into full-length, DNA-level genomes.
The synthetic genotypes mimic real human genotypes without just reproducing known genotypes, in terms of approved metrics. When training biomedically relevant classifiers with synthetic genotypes, accuracy is near-identical to the accuracy achieved when training classifiers with real data. We further demonstrate that augmenting small amounts of real with synthetically generated genotypes drastically improves performance rates. This addresses a significant challenge in translational human genetics: real human genotypes, although emerging in large volumes from genome wide association studies, are sensitive private data, which limits their public availability. Therefore, the integration of additional, insensitive data when striving for rapid sharing of biomedical knowledge of public interest appears imperative.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2943
Loading