Abstract: Discrete tomography deals with reconstructing finite spatial objects from lower dimensional projections and has applications for example in timetable design. In this paper we consider the problem of reconstructing a tile packing from its row and column projections. It consists of disjoint copies of a fixed tile, all contained in some rectangular grid. The projections tell how many cells are covered by a tile in each row and column. How difficult is it to construct a tile packing satisfying given projections? It was known to be solvable by a greedy algorithm for bars (tiles of width or height 1), and NP-hardness results were known for some specific tiles. This paper shows that the problem is NP-hard whenever the tile is not a bar.
Loading