Dynamic Noises of Multi-Agent Environments Can Improve Generalization: Agent-based Models meets Reinforcement LearningDownload PDF

Published: 25 Apr 2022, Last Modified: 05 May 2023ICLR 2022 Workshop on Gamification and Multiagent SolutionsReaders: Everyone
Keywords: Agent-based models, multi-agent dynamics, reinforcement learning
TL;DR: We study how Agent-based models improves the performance and generalization of RL agents due to the intrinsic noise of their dynamics.
Abstract: We study the benefits of reinforcement learning (RL) environments based on agent-based models (ABM). While ABMs are known to offer microfoundational simulations at the cost of computational complexity, we empirically show in this work that their non-deterministic dynamics can improve the generalization of RL agents. To this end, we examine the control of an epidemic SIR environments based on either differential equations or ABMs. Numerical simulations demonstrate that the intrinsic noise in the ABM-based dynamics of the SIR model not only improve the average reward but also allow the RL agent to generalize on a wider ranges of epidemic parameters.
1 Reply

Loading