Automatic Segmentation of Head and Neck Tumor: How Powerful Transformers Are?Download PDF

17 Dec 2021, 16:07 (edited 22 Jun 2022)MIDL 2022Readers: Everyone
  • Keywords: cancer segmentation, head and neck tumor, CT, PET, multi-modal data, transformer-based segmentation, HECKTOR
  • TL;DR: Automatic Segmentation of H&N Tumor
  • Abstract: Cancer is one of the leading causes of death worldwide, and head and neck (H&N) cancer is amongst the most prevalent types. Positron emission tomography and computed tomography are used to detect, segment and quantify the tumor region. Clinically, tumor segmentation is extensively time-consuming and prone to error. Machine learning, and deep learning in particular, can assist to automate this process, yielding results as accurate as the results of a clinician. In this paper, we investigate a vision transformer-based method to automatically delineate H&N tumor, and compare its results to leading convolutional neural network (CNN)-based models. We use multi-modal data from CT and PET scans to perform the segmentation task. We show that a solution with a transformer-based model has the potential to achieve comparable results to CNN-based ones. With cross validation, the model achieves a mean dice similarity coefficient (DSC) of 0.736, mean precision of 0.766 and mean recall of 0.766. This is only 0.021 less than the 2020 competition winning model (cross validated in-house) in terms of the DSC score. On the testing set, the model performs similarly, with DSC of 0.736, precision of 0.773, and recall of 0.760, which is only 0.023 lower in DSC than the 2020 competition winning model. This work shows that cancer segmentation via transformer-based models is a promising research area to further explore.
  • Registration: I acknowledge that publication of this at MIDL and in the proceedings requires at least one of the authors to register and present the work during the conference.
  • Authorship: I confirm that I am the author of this work and that it has not been submitted to another publication before.
  • Paper Type: validation/application paper
  • Primary Subject Area: Segmentation
  • Secondary Subject Area: Validation Study
  • Confidentiality And Author Instructions: I read the call for papers and author instructions. I acknowledge that exceeding the page limit and/or altering the latex template can result in desk rejection.
  • Code And Data: Data available at: https://www.aicrowd.com/challenges/miccai-2021-hecktor
5 Replies

Loading