Keywords: generative models, denoising diffusion probabilistic model (DDPM), convergence analysis, accelerated methods
Abstract: Accelerated diffusion models hold the potential to significantly enhance the efficiency of standard diffusion processes. Theoretically, these models have been shown to achieve faster convergence rates than the standard $\mathcal O(1/\epsilon^2)$ rate of vanilla diffusion models, where $\epsilon$ denotes the target accuracy. However, current theoretical studies have established the acceleration advantage only for restrictive target distribution classes, such as those with smoothness conditions imposed along the entire sampling path or with bounded support. In this work, we significantly broaden the target distribution classes with a new accelerated stochastic DDPM sampler. In particular, we show that it achieves accelerated performance for three broad distribution classes not considered before. Our first class relies on the smoothness condition posed only to the target density $q_0$, which is far more relaxed than the existing smoothness conditions posed to all $q_t$ along the entire sampling path. Our second class requires only a finite second moment condition, allowing for a much wider class of target distributions than the existing finite-support condition. Our third class is Gaussian mixture, for which our result establishes the first acceleration guarantee. Moreover, among accelerated DDPM type samplers, our results specialized for bounded-support distributions show an improved dependency on the data dimension $d$. Our analysis introduces a novel technique for establishing performance guarantees via constructing a tilting factor representation of the convergence error and utilizing Tweedie's formula to handle Taylor expansion terms. This new analytical framework may be of independent interest.
Supplementary Material: pdf
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8340
Loading