Rethinking Reward Modeling in Preference-based Large Language Model Alignment

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Bradley-Terry Model, Reward Modeling, Large Language Models
Abstract: The Bradley-Terry (BT) model is a common and successful practice in reward modeling for Large Language Model (LLM) alignment. However, it remains unclear *why* this model --- originally developed for multi-player stochastic game matching --- can be adopted to convert pairwise response comparisons to reward values and make predictions. Especially given the fact that only a limited number of prompt-response pairs are sparsely compared with others. In this paper, we first establish the convergence rate of BT reward models based on deep neural networks using embeddings, providing a theoretical foundation for their use. Despite theoretically sound, we argue that the BT model is not a necessary choice from the perspective of downstream optimization, this is because a reward model only needs to preserve the correct ranking predictions through a monotonic transformation of the true reward. We highlight the critical concept of *order consistency* in reward modeling and demonstrate that the BT model possesses this property. Moreover, we propose a simple and straightforward upper-bound algorithm, compatible with off-the-shelf binary classifiers, as an alternative order-consistent reward modeling objective. To offer practical insights, we empirically evaluate the performance of these different reward modeling approaches across more than 12,000 experimental setups, using $6$ base LLMs, $2$ datasets, and diverse annotation designs that vary in quantity, quality, and pairing choices in preference annotations.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7959
Loading