Abstract: Recent image tone adjustment (or enhancement) approaches have predominantly adopted supervised learning for learning human-centric perceptual assessment. However, these approaches are constrained by intrinsic challenges of supervised learning. Primarily, the requirement for expertly-curated or retouched images escalates the data acquisition expenses. Moreover, their coverage of target
styles is confined to stylistic variants inferred from the training data. To surmount the above challenges, we propose an unsupervised learning-based approach for text-based image tone adjustment, CLIPtone, that extends an existing image enhancement method to accommodate natural language descriptions. Specifically, we design a hyper-network to adaptively modulate the pretrained parameters of a backbone model based on a text description. To assess whether an adjusted image aligns with its text description without a ground-truth image, we utilize CLIP, which is trained on
Loading