Deep Residual Learning for Image Compression.Open Website

2019 (modified: 10 Nov 2022)CVPR Workshops2019Readers: Everyone
Abstract: In this paper, we provide a detailed description on our approach designed for CVPR 2019 Workshop and Challenge on Learned Image Compression (CLIC). Our approach mainly consists of two proposals, i.e. deep residual learning for image compression and sub-pixel convolution as up-sampling operations. Experimental results have indicated that our approaches, Kattolab, Kattolabv2 and KattolabSSIM, achieve 0.972 in MS-SSIM at the rate constraint of 0.15bpp with moderate complexity during the validation phase.
0 Replies

Loading